If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+8x-224=0
a = 5; b = 8; c = -224;
Δ = b2-4ac
Δ = 82-4·5·(-224)
Δ = 4544
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4544}=\sqrt{64*71}=\sqrt{64}*\sqrt{71}=8\sqrt{71}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-8\sqrt{71}}{2*5}=\frac{-8-8\sqrt{71}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+8\sqrt{71}}{2*5}=\frac{-8+8\sqrt{71}}{10} $
| 11x2-x=x2+2 | | 16x-2-27=0 | | 19+4x=3(−x+4)−28 | | 24c3-10c2-6c=0 | | 16x-2-27=07=8x+4 | | 3x+2x-18=8x+x-14 | | x2+2=5x | | X-4*(x+1)-(6x-3x-5)=-11 | | X×3+5=3x+5 | | x+58+x-19+x=180 | | a+4/11=-3 | | 6/5x+8=-2 | | 19=5-n,n | | 9c+3c+4=-8 | | 3/4(z+8)=9 | | s-13=(-18) | | 2.9=k-11.4,k | | 10+n/5=8 | | x+14=15,x | | 4x+3×-7=60-2×-13 | | 7x2=3x+19 | | k-16=(-27) | | 6=14-n,n | | x/3+16=24 | | F(x)=x^2+6x-9 | | 1+x=93232104390213219048192048203 | | 2^2a+^2=64 | | x2=-6x | | x+12=15,x | | 3(t-6)+7t=5(2t+4)-8 | | (9x-19)+(12x-38)=132 | | x(x)=x(x)-000000000000 |